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The approximate recurrence of the initial state, observed recently in the numerical
solution of Vlasov’s equation by a finite-difference Fulerian model, is shown to be a
property of three independent numerical methods. Some of the methods have exponen-
tially growing modes (Dawson’s beaming instabilities), and some others do not. The
recurrence is in fact a manifestation of the finite velocity resolution of the numerical
methods-—a property which is independent of the approximation of a plasma by a
finite number of electron beams. The recurrence is shown explicitly in the numerical
simulation of Landau damping by three different methods: Fourier-Hermite, the
recent variational method of Lewis, and the Eulerian finite-difference method.

1. INTRODUCTION

An asymptotic expression for the small perturbation of an equilibrium
Maxwellian electron distribution obeying Vlasov’s equation was obtained by
Landau [1] in the form f{x, v, ) ~ exp(ikx) exp{—ikot). This means that for the
linearized Vlasov equation the distribution function develops asymptotically a
velocity frequency kt, that grows beyond bound in time. The development of higher
and higher frequencies in velocity space, often designated as the development of
fine structures in the distribution, creates a fundamental difficulty for the numerical
solution of Vlasov’s equation which has not been surmounted. Because all
numerical methods have a finite velocity resolution, it is clear that the simulations
of the linear Vlasov equation will cease to be valid when the distribution reaches a
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velocity frequency equal to the maximum frequency that can be represented by the
numerical scheme. The aim of this paper is to show that most of the standard
numerical methods fail in precisely the same qualitative way: after the upper time
limit for the validity of the numerical simulation is reached, an approximate
recurrence of the initial state takes place, and thereafter the computation has the
same qualitative behavior as that observed after the initial time.! In some recent
work [2-4], this recurrence of the initial state has been discussed in connection
with the dispersion relation for a finite number of electron beams with a Maxwellian
envelope, originally introduced by Dawson [5]. In this paper, we wish tc emphasire
that the recurrence is due to the finite velocity resolution of the numerical methods,
and that it does not require that the methods have dispersion relations equal or
similar to Dawson’s. This main conclusion is proved by showing the recurrence of
the initial state obtained in the simulation of Landau damping by the Fourier-
Hermite method, whose dispersion equation has no growing modes [6]. This
recurrence, observed also with a finite-difference method without growing modes, is
gualitatively similar (in a sense to be made precise later) to those obtained with the
methods used by Lewis [2], Denavit [3], and Brackbill {4], whose dispersion
relations have growing modes because they are identical to the one obtained by
Dawson for a finite number of beams [5]. Therefore, as all these methods show the
recurrence of the initial state in the same qualitative way, this recurrence is inde-
pendent of the existence of growing modes (beaming instabiiities) or of the approx:-
mation of a plasma by a finite number of beams.

In Section 2, we review briefly the results obtained by Grant and Feix [6] for the
dispersion relation of the Fourier—Hermite method, and also those obtained by
Lewis [2] in the numerical analysis of Dawson’s dispersion relation.

In Section 3, we give the results of the numerical experiments on Landau damping
and their interpretation. The numerical experiments were carried out using the
Fourier—-Hermite method [6-8], and a finite-difference Eulerian method [2, 101
This method has been used to simulate Landau damping by a plasma model without
growing modes (beaming instabilities); in this case, the electric field behaves
gualitatively in the same way as that obtained by the Fourier—Hermite method.
The finite-difference program was then modified to simulate Landau damping by a
multibeam model (a numerical method is said tc approximate a plasma by
multibeam model if its dispersion relation is the same as Dawson’s); in this cass,
the time behavior of the electric field is qualitatively the same as that obtained by
Lewis [2]. In this way, we obtain a precise description of a plasma modeled by a
finite number of equally-spaced beams with a Maxwellian envelope (i.e., Dawson’s
model), which allows us to separate clearly the recurrence of the initial
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L As far as we know, the particle simulation method is the only existing methed which doss not
show the recurrence of the initial state (see Ref. [3]).
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state (common to all the numerical methods discussed) from the effects due to the
beaming instabilities (which are characteristic only of multibeam models). This
description is conmsistent with the numerical analysis of Dawson’s dispersion
equation carried out by Lewis [2]. A clear understanding of these numerical effects
is essential for the proper interpretation of the computations of nonlinear large-
amplitude plasma oscillations, a problem which is the subject of a forthcoming

paper.

2. DisPERSION EQUATIONS OF NUMERICAL METHODS FOR VLASOV’S EQUATION

Here we review and compare briefly the results obtained for the dispersion
equation of the Fourier-Hermite method [6], and those obtained for Dawson’s
dispersion equation [2]; it is recalled that multibeam numerical methods [2-4]
have dispersion equations identical to Dawson’s. A clear understanding of these
results is essential for the proper interpretation of the numerical experiments to
follow.

In the Fourier-Hermite method for the solution of the linearized Vlasov equation
(the notations and units of Refs. [7] and [8] are used here)

of (x, v, t) ——E( ) Ufo:
ot
)
oE ®
ox = f_wfdv,

where f, is the equilibrium electron distribution and E the electric field, the per-
turbed distribution is expanded as follows:

J M
fou )~ Y exp(inkx) ), exp(—3v?) hn(®) Z(2), @
n=—J m=0

where 4, are the orthonormal Hermite polynomials. The unknown time-dependent
coefficients Z,,,(#) corresponding to the fundamental Fourier mode, exp(ikx),
satisfy the following linear system of homogeneous differential equations [7, Eq.

(AD):

dzjdt = SAL(p), 3)
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where the vector Z and the matrix 7 are given by
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As the system (3) is linear, its solutions are expressed in the form exp(iw?), where
the w’s are the roots of the dispersion equation
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Grant and Feix {6} have proved that all roois «w of the dispersion equation {5}
are real; Turther, it can also be shown that all the roots occur in pairs of equal
magnitude and opposite signs when M - 1 {the number of terms in the Hermite
expansion) is even; if M -+ 1 is odd there is alsc one root w = C. In other words,
all the normal modes of the Fourier—Hermite method are standing modes—they
do not damp or grow. The general solution of (3) is written in scalar form as follows

P

M
Za(t) = Y, Cyj expliw;t), pt =0, 1,.., M, &
=0

where the C,,; are (M -+ 1)? constant coefficients to be determined. As is known
from the theory of homogenecous systems of ordinary differential equations with
constant coefficients [11], M? + M of the coefiicients C,,; are determined by
requiring that the expressions (6) satisfy the system (3); the remaining M + 1
arbitrary constants C,,; are required to satisfy the initial conditions. It is recalled
here that the most important physical quantity, the electric field, is proportional to
the coefficient Zy(¢) |7, 8]. The implications of the result (6) for the proper inter-
pretation of the numerical experiments will be discussed in the next section.

Lewis [2] has carried out a detailed study of Dawson’s dispersion equation,
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where w, = (4wne?/m)/? is the plasma frequency, and n; and v; are the electron
density and velocity of the jth beam. His results are compared now with those
obtained for the dispersion equation of the Fourier-Hermite method. Dawson’s dis-
persion equation has real roots (see Fig. 1(b) of Ref. [2]) which must occur in
pairs of equal magnitude and opposite sign, as one can see by inspection of Eq. (7)
assuming a Maxwellian or more generally a symmetric beam distribution; it is
recalled that this result is also true for the Fourier-Hermite dispersion equation.
We speculate that Dawson’s and the Fourier~Hermite dispersion equations have
corresponding real roots which are quite close to each other in magnitude. In
addition, Dawson’s dispersion equation has complex conjugate roots whose real
parts have a magnitude (giving the oscillation frequency) which is much smaller
than the magnitude of the largest real roots (see Fig. 1(b) of Ref. [2]). These
exponentially growing modes give rise to the so-called beaming or multistream
instability. It is important to stress here that, because the oscillation frequency of
the growing modes is much smaller than the largest frequency of the standing
modes, the growth of the beaming instabilities will be appreciable only in a time
scale which is long compared with the period of the fastest oscillations.

3. LANDAU DAMPING, RECURRENCE, AND BEAMING INSTABILITIES

The approximate recurrence of the initial state is first shown (see Fig. 1) in a
computation of Landau damping by the Fourier-Hermite method [6-8], and by a
finite-difference Eulerian method [10]. The wave number (in units of the reciprocal
of the Debye length) is £ = 0.5, and the number of terms kept in the Hermite
expansion was 100, the same as in the paper of Grant and Feix [6]; this computation
was also carried out by Armstrong [7] and by Lewis [2].

The computation of Grant and Feix (see Fig. 2 of Ref. [6]) shows the proper
Landau damping up to a time ¢t = 20; afterwards, a gradual deviation from the
correct Landau slope is observed. They state that this gradual deviation is caused
by the truncation of the Hermite expansion at 100 terms. In order to explain this,
they point out that the maximum velocity frequency that can be represented by a
Hermite expansion with N terms is N*/2, because the asymptotic behavior of the
Hermite polynomials for large N is Ay(v) ~ sin(N'/2v); using this in conjunction
with Landau’s result f(x, v, t) ~ exp(ikx) exp(—ikvt), they obtain an estimate
for the upper time limit of validity of the Fourier—Hermite method, 7' = N1/2k-1,
which for the computation shown in Fig. 1(a) gives 7 = 20. In contrast with the
Grant and Feix results, our computation is in excellent agreement with Landau’s
theory up to ¢ =~ 30, as can be seen by inspection of Fig. 1(a). Actually, the oscil-
lation frequency and damping rate obtained from the numerical output averaged
over the maxima occurring from ¢ = 4.73 to 29.14 [3rd and 14th maxima in Fig.
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1(a)] are 1.4155 wy and 0.15334 w, , to be compared with the exact values obtained
from Landau’s dispersion equation, 1.4156 wy and 0.15336 w, {121, The numerical
integration of the system of equations (3) was carried cut by a fourth-order
Runge-Kutta method with a time step 4r = 0.02. The initial conditions used were
the same as Armstrong’s, i.e., Zy(0) = constant, Z,,,{0) = 8, m = 0, correspond-
ing to a Maxwellian velocity distribution of the monochromatic exp(ikx)} inttial
perturbation.

We must conclude that the gradual deviation from the correct behavior in the
Grant and Feix computation during the interval 20 < ¢ <{ 30 can only be due to
numerical inaccuracies. At about 1 = 32, the computation in Fig. 1(a) shows in
Lewis words [2] an “explosive deviation” from the correct continuous results. This
is the approximate recurrence of the initial state, and is a characteristic not only of
the variational method of Lewis (see Fig. 4(a)) or of the distribution pushing
method used by Brackbill and others [4, 13], but is common to most standard

ethods of solution of the collisionless Viasov equation because they all have a
finite velocity resolution (see, however, footnote 1). It is of interest to note here that
after the recurrence, the damping of the electric field is much smaller than the
initial Landau damping, but the oscillation frequency is quite close to Landau’s
frequency. In a previous paper where the electric field performed steady-state
oscillations (see Fig. 2 of Ref. [10]), the recurrence was much more striking than
here, because after the explosive deviation the steady-state oscillations were almost
identical to those observed after the initial time.

The computation shown in Fig. 1(a) is proof that the explosive deviation from the
correct Landau behavior has nothing to do with the beaming instability, This is
because the dispersion equation for the Fourier-Hermite method [see Egs. {5}
and (6)] has only real roots, i.e., the normal modes of the Fourier-Hermite method
are standing modes-there are no growing modes.

What is fascinating about Landau’s problem is that in the Fourier-Hermite
computation, the electric field (which is proportional to Zy; , see Eq. (6) with m = 0}
oscillates with the proper frequency and damping rate predicted by Landau for a
nondissipative system with an infinite number of degrees of freedom, the correct
damping being obtained by the “phase-mixing” of the Af + 1 real frequencies ;.
A more cemplete discussion of this feature is given by Grant and Feix [61.

In Fig. 1(b) we show the recurrence of the initial state obtained in the simuiation
of Landau damping by a finite-difference Eulerian method [10]. The behavior of the
electric field and its recurrence are similar in every respect to those observed with
the Fourier—Hermite method. It should be realized that in this finite-difference
computation, the equilibrium Maxwellian distribution is nor approximated by
a finite number of §-function beams with a Maxwellian envelope; rather, at asy
point in velocity space the derivative of the distribution is defined smoothly by
using finite-difference expressions obtained from the vaiues of the disiribution
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given at the neighboring grid points. It is for this reason that the finite-difference
computation shown in Fig. 1(b) is not subject to beaming instabilities, and is
therefore similar in every respect to the Fourier—-Hermite computation. For a
velocity mesh width A, the highest velocity frequency that can be represented is
m/dv; using this in conjunction with Landau’s result

f(x, v, t) ~ explikx) exp(—ikur),

we get the estimate for the upper time limit of validity of a finite-difference computa-
tion, T = w/k dv [9, 10]. It should be stressed that these estimates are obtained
using Landau’s linear result for the asymptotic electron distribution and, therefore,
are strictly valid only for the computation of the electron distribution in Landau’s
model problem. However, the computations in Fig. 1 show that the electric fields
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Fig. 1. The approximate recurrence of the initial state without the multibeam instability
for k = 0.5. (a) Fourier—Hermite method with 100 terms; (b) Finite-difference method with
dv = (7/20) v; .

are obtained correctly during a time interval longer than T; for the finite-difference
computations, the superperiod (time elapsed between two successive recurrences of
the electric field) is almost 27 This property of Viasov’s equation can be understood
by inspection of Fig. 2 and 3. In Fig. 2, we plot at successive instants of time the
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Fic. 3. Time sequence of the velocity spectrum | G(/; , #) defined by Eg. (9). Finite-difference
method with & = 0.5, and 4v = (1/12) v,. Time in units of wj™’.

real part of the first Fourier component of the perturbed electron distribution
obeying Eq. (1), i.e.,

L
e t) = % L Fx, 1) exp(—ikn) dx, k= 2 2)

[8:¢]
St

where L is the fundamental domain length. The parameters characterizing this
finite-difference computation are k = 0.5 and dv = (1/12)v,, where ¢, is the
thermal velocity. The initial perturbation f(x, r, ¢) is spatially monochromatic
exp(ikx) and has a Maxwellian distribution (see Fig. 2 for 7 = 0}, As time advances,
the distribution (8) develops the fine structures predicted by Landau’s theory;
finally, at t ~ T = w/k dv = 75.4, the maximum fine structure (or shortest
wavelength in velocity space) that can be represented by the finite-difference grid
is reached, and thereafter the numerical simuiation “unfolds” the distribution
which becomes progressively smoother until the time 7 ~ 27 = 150.8, at which an
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approximate recurrence of the initial state (the Maxwellian distribution) takes
place, and the development of the fine structures starts once again.

In Fig. 3, we show the absolute value of the Fourier velocity spectrum of the
time-dependent distribution given by Eq. (8), i.e.,

GUs, 1) = f A Dexp(—ilgyde,  L=s—"—, s=01,2., 9

Pmax

~Pmax

where vmax is defined by the velocity grid spacing as vymax = N dv, and 2N + 1
is the number of grid points. It should be recalled [7, 8] that the electric field is at
all times proportional to the amplitude of the Maxwellian part of the distribution
fi(v, 1), which in turn is proportional to the spectrum amplitude for /; = 0.
Because the initial perturbation is Maxwellian, at ¢ = 0 the spectrum amplitude
for I, = 0 is largest. As time advances, the narrow velocity spectrum moves to the
right in the manner of a travelling wave. When the spectrum reaches the maximum
I, available in the computation grid (/; = 63 in Fig. 3)att ~ T = w/k dv = 75.4,
a reflection takes place and thereafter the spectrum travels to the left, till at ¢ ~ 2T
it reaches again the left “wall” (/, = 0) and the approximate recurrence takes place,
at which time the electric field once again reaches a value of the same order as the
initial value.

It should now be perfectly clear that the sudden deviation from the correct
behavior shown in Fig. 1 is nor a numerical instability, i.e., the solution of the
system of equations (3) can be obtained numerically with arbitrary accuracy
during all the time interval shown in Fig. 1(a). Of course, Eq. (3) represent a non-
dissipative system with a finite number of degrees of freedom, and cannot approxi-
mate indefinitely a nondissipative system with an infinite number of degrees of
freedom (the collisionless plasma modelled by Vlasov’s equation), where the
damping is due to the dispersal of the electrostatic energy initially concentrated in
one degree of freedom into an infinite number of degrees of freedom [14].

A. Effects of the Muliistream Instability

The computations shown in Fig. [ indicate that the recurrences of the initial
state, taking place roughly at 2T a~ 2NY%¢1 (Fourier—-Hermite method) and
2T =~ 2w(k Av)~! (finite-difference method), are only approximate. Here we are
not interested in more accurate recurrences which might possibly take place after
periods of time orders of magnitude higher than the above 7 [15]. It is now shown
that, at least for a sufficiently short time, the recurrences are not prevented by the
multistream instability, but that this has only a certain quantitative effect on them.

After the original theoretical discussion of Dawson on the Landau damping of
a finite number of electron beams [5], Lewis has recently carried out a numerical
analysis of Dawson’s dispersion equation, which is also the dispersion equation
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for his variational method of solution of Vlasov's equation [2]. We now describe 2
numerical experiment carried out with our finite-difference Eulerian method iz
which the plasma is approximated by a finite number of beams with a2 Maxweilian
envelope. This is realized numerically by using the following initial perturbation
in the distribution

(x exp[—@ Av)?2l cos kx,  # = 4wy,
0, n = by,
y = —Nb N _Nb + 1,..., ]\\(Yb 5

i1 = '—4Nb N _4Nb + 1,..., 4N5 5

flx,ndu, 0) =
(10)

where 4 is the grid spacing. Thus, we simulate 2¥, -~ | approximate S-function
beams over a velocity grid having four times as many grid points. In other words,
for each grid point with an electron beam there are six grid points (three to the left
and three to the right) in which the distribution is set equal to zero. The aim of this
computation was to simulate Dawson’s model, and therefore, to obtain a Landau-
damped electric field in qualitative agreement with that observed in Lewis’ simula-
tion. The resulis of Lewis’ computation and of our own are given in Fig. 4, and
show a complete qualitative agreement with each other, as expected. Because in
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Fic. 4. The approximate recurrence of the initial state with the multibeam instability present,
k = 0.5. (a) Variational method of Lewis [2]; (b) Finite-difference method with dv = (#/80) ¢;.
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these computations the plasma is approximated by a multibeam model, their
dispersion equations have exponentially growing modes. The effect of these multi-
stream instabilities is to increase at the recurrence the magnitude of the electric
field relative to the initial value. Even after the first recurrence, the multistream
instability is not strong enough to prevent the damping of the electric field which
results from the phase mixing of all the modes of the dispersion equation. A. com-
parison of the computations shown in Fig. 1(b) and 4(b) indicates quite clearly that,
other than the increase of the electric field at each recurrence, the qualitative effects
of the multistream instability on the electric field are small. More expilicitly, the
“superperiod” (time elapsed between two recurrences), the electric field oscillation
frequency and its damping rate are almost identical in the computations shown in
Fig. 1(b) and 4(b) during the time interval 0 <C ¢ < 47. This is in agreement with
Dawson’s and Lewis’ analyses, which show that the time scale for the growth of the
electric field due to the multistream instability is large compared to the Landau
oscillation frequency. Of course, after a time sufficiently long for several recurrences
to have taken place, the multistream instability will finally dominate the damping
due to the phase-mixing of the modes.

4. CONCLUSION

We have established that when the linear Vlasov equation is solved numerically
by a method without growing modes (beaming instablities), the approximate
recurrence of the initial state is related to the fact that the numerical approximation
represents a non-dissipative dynamical system with a finite number of degrees of
freedom. That these systems should have recurrence properties is physically
reasonable, because sooner or later their characteristic standing modes might again
be in aimost the same phase as that corresponding to the initial condition. A precise
analogue of this focusing in time of the standing modes of the truncated Vlasov’s
equation is the focusing in space of the solitons observed in the numerical solution
of the Korteweg—de Vries equation with periodic boundary conditions, which also
Ieads to the approximate recurrence of the initial condition [16]. It should be noted
that, just as the (truncated) Fourier—Hermite approximation to Vlasov’s equation,
the Korteweg—de Vries equation represents also a nondissipative system where most
of the energy seems to be concentrated in a finite number of degrees of freedom,
i.e., the eight solitons of the Zabusky and Kruskal computation [16].
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